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Abstract

Motion of a conductor relative to a magnetic field distorts the field. This

paper considers a cylindrical slug moving in a two-dimensional magnetic field,

represented by the vector potential A0 0, where 0 A0 /8 0 = 0. Maxwell's equations
0A

are solved for the distorted potential A 0 in the form of a rapidly converging

series A = An . The An 's are given in a form suitable for evaluation by a digital

computer. The nonequivalence of the apparently analogous problem of a stationary

slug in a time-varying field is noted and discussed.
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Distortion of a Magnetic Field By the Motion
of a Cylindrical Conductor

1. INITODUCTIO\

1.1 Ilackground

By Faraday's law a change of the magnetic field in a conducting slug induces

currents in that slug. This change may be either time variation of the field on a

stationary slug or motion of the slug in a constant field. By Ampere's law these

currents produce an induced magnetic field whicn perturbs the original field. Such

distortions have been use,. to measure the conductivity of various moving (Lin,

Resler and Kantrowitz, 1955) and stationary (Chambers and Park, 1961) slugs.

Theoretical analysis has been limited to a rectangular slug in a one-dimensional

field (Oddson, 1963). These devices have been calibrated by measuring slugs of

known conductivity. However, some phenomena, such as skin effect, which were

not a problem in these cases, can be difficult to duplicate in the calibrating slugs.

To extrapolate the calibration to these cases, one must solve the problen for a

cylindrical slug in a two-dimensional field.

1.2 Prohlem

Consider an initial field represented by the vector potential A0 0 with the

condition that 8 A0 /8 0 = 0. A cylindrical slug of radius b, length 2k, and
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conductivity u, moves into this field at velocity v. (Figure 1.) The slug's midpoint

is at position z = vt at time t. What perturbation in A will be caused as a result of

this motion? Since this problem involves spatial variations of the field, it will be

referred to as the Space Case or Space. Consider also the problem of an identical

but stationary slug with its midpoint at the point z0 z const. in an initial field

represent-ed by the vector potential A0 (t) 0. Again with the condition that

3 A0/3 0 = 0. What perturbation in A will be caused as a result of this time varia-

tion of the initial field? Since this problem involves temporal variations of the

field, it will be referred to as the Tim" Case or Time.

A-

1Io(AoZo)

z

Figure 1. Geometry of Problem. A cylindrical slug of Length 2f and radius
b moves along the z axis with velocity v. At time t the midpoint of the slug is at
the point where z = vt. A current 10 flows in a single turn loop at r 0 , z0 = 0

For the purpose of this discussion let A0 be created by current 10 flowing in

the loop at r 0 , z0 = 0. More complex fields of this symmetry may be represented

by a number of such loops.
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1.3 Mlethod of Solution

The symmetries postulated above allow one to reduce Maxw ?l's equations for

moving media to one scalar differential equation for A, where A is the vector

potential for the total magnetic field, both initial and induced. Let A equal Z/ A

where An is the n th order perturbation. Then, by physical reasoning, A0 generates

first order eddy cvrrents 1 which create the first order perturbing field AI .

Similarly potential AI generates currents 12 which create potential A2 , and so or..

This can be carried to as many orders as accuracy requires. Rationalized inks

units will be used initially. Later all quantities will be made dimensionless.

2. SOLUTION

2. 1 Matihcniatical Expression of Problem

Consider Maxwell's equations for moving media (Panofsky and Phillips, 1955).

V. E 0

V. B-- 0

VX B =i L0 J 0 + 0
o E + go avXB+ t.0e0 (a E/at) (Space)

VX B g z 0 j0 + / OaE + Uoe 0 (0 E/dt) (Time)

VX E - 3 B/at (1)

J0 is the current density which produces the initial field.

* is the conductivity of the medium.

v is the velocity of the medium relative to the fields.

Charges, both true and those due to polarization, are assumed to be nonexistent.

The velocity of the medium is much less than the velocity of light. Maxwell's

equations outside of the medium are obtained, if the velocity and conductivity are

set equal to zero.

The fields may be expressed by the vector potential A.

E = -D A/at

B = VX A. (2)
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Combining Eq. (2) and Eq. (1), one finds that

VX(YXA) = (o " g0(  A/at)+ go a vX (VX A)- 0 E 0 (8 2 A/3t2) (Space)

YX (X A) = 0J - 0o (8 A/at) - go0 e 0 (a 2 A/at 2 )" (Time) (3)

F-_r this problem, the vectors have the following forms:

jo i0  (4a)

A
v v k (4b)

A A
B=B r+B k (4c)-" r Z

E -E (4d)

due to the symmetries postulated above.

From Eqs. (2), (4c) and (4d), it follows that

A
A = A O (5)

since it has been assumed that

a E/a 0 a B/a 0 = 0 (6)

then

a Ala 0 / 0. (7)

A
From these considerations it can be shown that only the 8 component of Eq. (3) is

important.

(8/Or) E r - (a/or) (rA)] + () 2 A/8z 2 ) g - + 0o v (aA/az)

2 2+ goo (aA/at) + .u0 E0 (8 A/at2) (Space)

(8/8r) [r - I (a/ar) (rA)] + (a 2 A/az 2 ) = -0 Jo + 90 a (a A/at)

+ 1 E0 (a 2 A/at 2 ) (Time) (8)
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Note that A0 = c 2 , where c is the velocity of light. The terr '0 2 A/az2 ) is

of the same order as v- 2 (0 2 A/3t 2 ) (Space) or w0-2 r - 2 (a 2 A/8t 2 ) (Time). The
frequency w0 is some fundamental frequency of the Time Case so chosen that

, 0 r0 (Time) is on the order of v (Space). Thus the term p10 0 a2 A/at 2 ) -

(v/c) 2 v 2 (a 2A/at 2) (Space) = (w0 r 0 /c)2 Wo_2 r 0 2 ( 2A/t 2) (Time) may be

omitted.
This makes Eq. (8) a diffusion equation. Since physically this is a diffusion

problem, the approximation is valid.

All quantities will now be made dimensionless as follows: Choose a charac-

teristic current 10 and a characteristic length r 0 . Multiply each term in Eq. (8)
by r 0

2 (110 10) = . Substitute dimensionless terms for the resulting ratios as indi-
cated in Table 1. For the remainder of this paper only these dimensionless terms

will be used. The dimensionless equivalent of Eq. (8) is

(a/ar) [r 1 (8/a r)(r A)] + (0 2 A/az 2 )

-"0 + a [ (OA/3z) + (OA/Ot)] (Space)

S-J0 +a [aA/8t]. (Time) (9)

Table I. Relationship Betaeen the Ratios af Quantities in inks Units and the
New Dimensionless Quantities

Ratios Dimensionless Quantities

r/r 0  r

z/r 0  z

vt/r 0 (Space)

w0 t (Time) t

A (po Io ) ' A

j 0 r 0 /I0 Jo

b/r 0  b

r/r o
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Table 1. Relationship Between the Ratios of Quantities in inks Units and the
New Dimensionless Quantities (Cont)

Ratios Dimensionless Quantities

Ac v r 0 (Space) C
A w )0 r 0 ( Time)

22 Fiinctious to b~e Used

Consider first the potential a C due to a cut-rent I nin a 1oprnzn h

cu'rent density j n is given by

in~ =1 I O6(z -z ) 6(r -rn). (10)

The Dirac delta, 6 (y - y m), is defined by Eq. (11).

Y2

0 otherwise

f Y2g(y)& (y-ym)dy~ g(ym) YI < Ym :y 2
1 - 0 otherwise. (11)

The potential is given by (Stratton, 1941)

a = (2i-0 1 (r /r0l 1 2f(x ).(12)n n n, n

The following definitions are required:

xn = 4r r [ (rn +r) 2 + (zZ) 2  1

f (xn Xn- /2(2 - xn)K 2 EI

Kn 1 n 0

E n = f0r,/ 2 1 ~x nsin 2011/2 d (13)
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Kn and En are the complete elliptic integrals of the first and second kinds (Jahnke

and Emde, 1945). The function f (xn ) is shown in Figure 2; a 0 (r 0 , z ) is mapped
in Figure 3.

Azimuthal currents in a solid may be regarded as a continuous distribution

of such rings. To obtain the potential due to such currents, one must integrate

over all such rings and divide by an appropriate normalizing factor. Thus,

b t+tl
A n (r, z) -f f t-k. an d zn d rn

z b k (Space)

0 0  a dz drZo n n n

(Time) (14)
zbk

It should be noted that

i n = In (rn, Zn). (-5)

Since the normalizing factor will later cancel, large values of ; present no problem.

Note that n refers to the n -'horder perturbation. The rings are not discrete and

therefore are not numbered

One more function is needed. We define An, n-1 to be the function A n with

r n, zn substituted for r, z. Similar definitions may be formed for xn, n-I' K n-I'

and E n, n-l" an, n-I is the potential at rn, zn due to a current In-1 in the loop at

rn-1 zn l -

Since a n is the potential of a current loop, it must satisfy an equation similar

to Eq. (9) except a = 0.

(a/ar) [r - 1 (a/0r) (r an)] + (a 2 an/az 2 ) 6- (r - rn ) 6 (z - z). (16)

Since a differential with respect to r is unaffected by integration over r_,

Eqs. (14) and (16) show that
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(a/r)-[ (I / Ar)](rA) + (02 An /0Z2)

z-(2b)- I fob ft In (rn, Zn)6 (r -rn) 6 (z- 7.)z d r (Space)
b z0+j

-'bf f0 fzOL In (r n , z )6 (r - r n ) 6 (z - z n ) dz n dr n (Time) (17)

0

Using the definition of 6 (y - y m) in Eq. (11), one may show that

(8/Or) [r- (3/ar) (r An' ] + (02 An/az 2)

-(2bt) " I In (r, z) r < b, t - < z < t + (Space)

z0 -<z <z 0 +  (Time)

0 otherwise. (18)

2.3 SoILtion

Let the s,_Iution to Eq. (9) be

A=XA 
(19)

The An's will now be evaluated.
Outside of the slug, Eq. (9) becomes

(/ar) [r - (0/0r) (r A)] + (8 2 A/ z2 ) -J 0 " (20)

If Eq. (19) is used to substitute for A on the left-hand side of Eq. (20), the A0term will contribute "J0 to the right-hand side and the other An's will contribute.
nothing to the right-hand side and the solution is obviously valid. Inside the slug
Eq. (9) can be satisfied i: the same manner if

00a [(OA/-z) + (8 A/Ot)] z-2b¢f)"  Z In (r, z). (21)
n=1



I

i1

If Eq. (19) is now used to replace A on the left-hand side of Eq. (21)

00

(-2b -1 __j I (r,z) =

n=l

o

a E [ (d An- /a z) + (a A_ 1 /a t)] (Space)
n=1I

a D [a An 1_/ t]. (Time) (22)
n=1

Replacing r, z by rn, zn and equating these two series term by term

In (r n , zn) -2abf[(8 An, n-l/a z n ) + (8 An, n-l/0t)] (Space)

-2abf[ A n, n-1l/at]. (Time) (23)

When this is substituted into Eq. (12) and the result substituted into Eq. (14)

b t+(.

An = -(2 a 0 f (rn/r)/2[(aAn, n-1/aZn)+ (0 An, nl/at)]

(Space)
f(xn ) d zn d r n

-(2,)1 fb f ((rn/r)1 / 2 [a An, n- 1/st] f(xn ) dz n dr w(Time) (24)

0

An important difference in the two cases may now be noted. In the Time Case

only An, n-1 is time dependent. Equation (24) may be simplified by taking the time

derivative outside the integral.

A- P/at)2 r r A fx dzdr Time) (25t)

0 0 , n

I
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An iteration process will .-ow yield

n -- b b b Z0+k rzo+f
An natn)(-21t)-na n f f 0 f

0 0zo- 0
(Time)

A1 , 0 f(x1 ) f(x 2 ). . .f(xn ) dz 1 . . dz n dr 1 dr 2.,. .dr (26t)

Usually the time dependence of the initial field can be separated A1, 0

A',, (r,z) glo(t) to yield

A = (an g/atn)( 2 )n n b f . .
0 z 0 - z O -f

(Time)
Al, 0 fAxl)..f(x n ) d z . . .dz n d r 1 ' .dr n .  (27t0

If gl, 0 (t) et then

-(i, nnit fb b 0 f z-
A n (-i/ 2 ,)n al ei 0l.O .S f ..O - ." fo-

0 0 fz0 L z

(Time)

A0 A(x 1 ""f(xn ) dz 1 . .d z n d r . .. dr n' (280

Thus each An is cos t or sin t times an amplitude.

In the Space Case such a simplification is not possible. There are z and t

dependent terms in the integral and in the limits which are not to be differentiated.

As will be seen below, the successive A differ by more than simple phase shifts.n

However, the differential equation (Eq. (9))has been changed to an infinite number of

integral equations (Eqs. (19) and (24)). The nth equation corresponds to the nth

perturbation. A0 is the initial field; A is the induced field; A2 is the first order

skin effect; and so on.

A0 = (2 -r-2 f(x0 )

b t+ 1 
(Space)

A 1 = -(2 i) a f f (rl/r)2 [a Ai,0 /Ozl f(xd)dz I dr I  (25s)
0 t- f

b t+f
A2 = -(2T) -a f f (r 2 Ir)l 1 2 [(A 2 , 1 /az 2 ) + (A2, 1 /at) f(x2 ) dz 2 dr 2

0 t-f
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A Fortran program for the IBM 7090 has been written to evaluate An
(2 ,/,)n (n = 1, 2, 3) at r = 1, z = C. Slug length and radius are variable inputs for

this program. Typical results art! shown in Figure 4. As long as a < 2 r the

approximation

A = A0 - A1 + A2 + A3  (Space) (26s)

seems valid.

3. CONCLUSIONS

The solution as presented in Eq. (25) allows one to calculate the perturbed

field around a cylindrical slug moving in a magnetic field. While Eq. (25) is based

on the assumption of the A0 given there, it is easily extended to certain other

cases. Any other initial field which has azimuthal independence and has no

azimuthal component may be accommodated by suitably changing A0 . In practice

this would be a solenoid or some approximation thereof. If the initial field, hence

A0 is time dependent, a time derivative must be included in the equation for A1 .

1 b t-Lf 1/
A, (2 ri 1 a f f (rj/r)/2 [(A, 0 /az 1 ) + (aAi, 0 /at)]

0 t-k (Space)

f(x 1 ) dz I dr I . (27s)

It is possible now to look back and study the difference between the Space Case

and the Time Case. The difference first occurs in Eq. (1) where a v X B term is

added to the electric field in the Space Case. While it appears that one could

easily modify the electric field to accommodate this term, in Eq. (8) this term

gives risetoa z derivative of the potential. In Eq. (14) the difference in these two

cases by the inclusion of the variable t in the limits of the integral is the Space

Case. Comparing the Space solution in Figure 4 with the Time solution in Eq. (27t)

shows that two cases, which were apparently analogous in Eq. (1), actually have

little or nothing in common. The Time Case solution is the sum of a number of

sinusoidal waves of phase 0, ±iT/2, and sT. The Space Case solution is the sum of

some definitely nonsinusoidal functions of no simple phase relation.
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Appendix A

Singularitfis

Before a computer can be used to solve Eq. (25), the singular points must be

considered. Otherwise the computer may try to evaluate infinity. In Eq. (12), it

will be noted that an depends on {r xn)-i/2 and Kn . The first of these grows

without bound when r x -*-0, while K grows without bound when x 1 . The first
n n 12

of these is easily handled. Near r = 0, xn cr. Thus (rxn)'/ a Xn. An expansion

of the functions in powers of xn near xn 0, shows that

2

(2 - xn ) Kn -2 E n  x (Al)

Thus, at these points a n approaches zero. Although this is obvious from physical

considerations, the computer must be given mathematical reasons. When xn = 1,

a true singularity is found.

K noc In [ 4 (1 - x n1/2 )-. (A2)
Kn [4 l/2) - l

This is the point at which r = rn, z = Zn* In Eq. (10) the current cross section was

I assumed infinitesimal. This introduces a singularity into the current density. In

the case of A0 one could introduce the wire cross section but the easiest solution

is to avoid the singular point. The slug will never run through the current-carrying

element so the true value of A0 at that point is unimportant. In the other an this

.12
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singularity occurs in a function which s to be integrated. Since Kn is proportional
to the logarithm, it is to be expected that the integral of Kn will remain finite.

Physically this is expected to be true since infinite fields are not found in the slug.

It appears to be true mathematically. While the integrals of Eq. (25s) have not been

solved analytically, the following integrals can be solved and are all found to be

finite:

I
f Kn dx n

0

J K x 2dx n'3
fo1 Xn2

f0 dx "
Kn Xn n

In each case the approximation

1 1-6

f K g (X fdx =f K rdn d [K g (x x=]_, (M)f00
gv n e x n n r l 0 t ( x n  dxn + er isn  l hn)] x percent.

gives excellent results. With iE < 10 - 2 the error is less than 1 percent.
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